
2050A Revision Exercise: 2017 1st term

1. Use the ε-N definition to show that lim n+(−1)n

n2−1
= 0.

2. Use the ε-N definition to show that limn

(

1
1·2 +

1
2·3 + · · ·+ 1

(n−1)·n

)

= 1.

3. Using the definition show that the sequence (n
2+1

2n+1 ) diverges to ∞.

4. Show that if xn > 0 and lim xn = a, then
√
xn → √

a.

5. Suppose that y1 > x1 > 0 and xn+1 =
√
xnyn and yn+1 = xn+yn

2 . Show that limxn and
lim yn exist, moreover, lim xn = lim yn.

6. Show that if lim xn = a exists, then lim x1+···+xn

n = a.

7. Show that if (xn) is an unbounded sequence, then there is a subsequence (xnk
) diverges to

+∞ or −∞.

8. Suppose that (xn) is an unbounded sequence and does not diverges to +∞. Show that if
(xn) is bounded below, then there are two subsequences (xnk

) and (xmk
) of (xn) such that

(xnk
) diverges to +∞ and limk xmk

exists.

9. Suppose that |r| < 1 and (an) is bounded. Let xn :=
∑n

k=0 akr
k. Show that the sequence

(xn) is convergent.

10. Using the definition, show that limx→−1
x−3
x2−9

= 1
2 ; limx→∞

x−1
x+2 = 1 and limx→∞

x2+x
x+1 =

∞.

11. Let x ∈ [0, 1] and f(x) = 0 if x ∈ Q; otherwise, f(x) = 1. Find the right and left limits of
f at x = 1/2.

12. Show that limx→∞ f(x) = L exists if and only if for any sequence (xn) with xn → ∞, we
have f(xn) → L, where L ∈ R or L = ∞.

13. Let f be a function defined on [a, b]. Suppose that limx→c± f(x) both exist for all c ∈ [a, b].
Show that f is bounded.

14. If f and g are continuous functions on R, show that the function h(x) := max(f(x), g(x))
for x ∈ [a, b] is also continuous.

15. Let f be a continuous function defined on [a, b]. Let a = x0 < x1 < · · · < xn−1 < xn = b

be any partition on [a, b]. Show that there is ξ ∈ [a, b] such that f(ξ) = f(x0)+···+f(xn)
n+1 .

16. Show that if f is a continuous strictly positive function on [a, b], then 1
f(x) is also continuous

on [a, b].

17. Prove by the definition that the functions f(x) = x1/3 is uniformly continuous on [0, 1]
and g(x) = sinx2 is not uniformly continuous on R.
Proof: Claim: g(x) is not uniform continuous on R. In fact, for each positive integer n, let

xn =
√

π
2 (n + 1/n) and yn =

√

π
2n. Then sin x2

n−y2n
2 = sin π

4 (2 + 1/n2) and | cos x2
n+y2n
2 | =

| sin(π2n2 + π/(4n2))|. Thus if we take n = 2k + 1 and k → ∞, then

sinx2n − sin y2n = 2| cos x
2
n + y2n
2

|| sin x2n − y2n
2

| → 1

but |xn − yn| → 0. Therefore, the function g is not uniformly continuous on R. ✷

18. Is the function f(x) = x2 uniformly continuous on R?
Proof: Using the similar argument as in question 17, the result follows by considering
xn = n+ 1/n and yn = n. ✷
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19. Is the function f(x) = sinx
x uniformly continuous on (0, π)?

Proof: Define a function F on [0, π] by F (0) = 1; F (π) = 0 and F (x) = f(x) for x ∈ (0, π).
Then F is continuous on [0, π] and thus, F is uniformly continuous on [0, π]. This implies
that f is uniformly continuous on (0, π) since the restriction F |(0, π) = f . ✷

20. Let f be a continuous function defined on [a,∞). Show that if limx→∞ f(x) exists, then
f is uniformly continuous on [a,∞). Is the converse true?
Proof: Let ε > 0. Since limx→∞ f(x) exists, then by Cauchy Theorem, there is M > a such
that |f(x) − f(y)| < ε as x, y ≥ M . On the other hand, since f is uniformly continuous
on [a,M ], we can find δ > 0 such that |f(x)− f(y)| < ε as x, y ∈ [a,M ] with |x− y| < δ.
Therefore, we have |f(x)− f(y)| < ε as x, y ∈ R with |x− y| < δ. The proof is finished. ✷

21. Show that if f is a uniformly continuous function defined on (a, b), then f is bounded.
Proof: Since f is uniformly continuous on R, then there is δ > 0 such that |f(x)−f(y)| < 1
as x, y ∈ (a, b) with |x− y| < δ. Now we take a partition a = x0 < x1 < · · · < xn = b with
|xk −xk−1| < δ for all k = 1, ..., n. If we let M := max(|f(x1)|+1, ...., |f(xn−1)|+1), then
|f(x)| < M for all x ∈ (a, b). The proof is finished. ✷
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